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Abstract

H1, H2 and Hv are the most commonly used algorithms for frequency response function estimation. H1 and Hv can be

defined for multiple input–multiple output systems, whereas the H2 estimator requires that the number of inputs equals the

number of outputs for a unique solution. Otherwise, a non-square matrix needs to be inverted leading to numerical

problems. These numerical problems can affect the Nonlinear Identification through Feedback of the Outputs (NIFO)

nonlinear parameter estimation algorithm in which nonlinearities are treated as internal feedback forces (or inputs), which

can lead to more inputs than outputs. In this paper, a modified form of the H2 algorithm is presented that enables accurate

estimates using NIFO. The modification to the H2 algorithm is the addition of a correlated output, based on the nature of

the nonlinearity in the system being identified, in order to make the matrix to be inverted square. Analytical models with

multiple nonlinearities are used to show that this modification to H2 leads to accurate estimates that are robust to noise on

both the input and the output and that the modified algorithm is more robust to simultaneous noise on the input and

output measurements than the H1 and the Hv algorithms. Mathematical reasoning is used to explain the greater robustness

of the modified H2 algorithm over the traditional H1 algorithm.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear identification through feedback of the outputs (NIFO) [1] is a nonlinear parameter estimation
algorithm which identifies the underlying linear frequency response function (FRF) and the nonlinear
parameters in one step by treating the nonlinearities as feedback forcing terms. Hickey et al. [2] used NIFO to
identify the nonlinear behavior of vehicle suspension systems. Once the system nonlinearities have been
characterized and the model has been formulated, a frequency response function estimation algorithm can be
used to estimate the linear frequency response function and the nonlinear parameters.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Various authors have examined the numerical issues associated with parameter estimation in linear system
frequency response functions in the presence of noise on the input and output channels, see, for example
Ref. [3]. Issues associated with these sources of noise in nonlinear system identification have also recently been
examined by Josefsson et al. [4] who compared NIFO and the reverse-path method [5] for nonlinear parameter
estimation with random noise signals using the H1 algorithm. The comparison was performed with noise on
the input; however, the H1 algorithm minimizes the effects of noise on the output and not the input. This
approach works well for the reverse-path method because it is formulated with the input as the output of the
model. Consequently, Josefsson et al. showed that the reverse-path method provides more accurate estimates
than NIFO when H1 is used. Because the nonlinear outputs are treated as feedback forces in the NIFO
formulation, any noise on the output also becomes part of the input. Consequently, the H1 algorithm leads to
biased estimates even if the measured input is not contaminated by noise. This issue can easily be overcome by
using the Hv algorithm or H2 if the noise is only on the measured input. However, the feedback of the outputs
can lead to a system with unequal numbers of outputs and inputs. A necessary condition for a unique solution
with the H2 algorithm is that the number of inputs be equal to the number of outputs [3]; therefore, H2 cannot
be used in such cases.

This issue highlights an important aspect of nonlinear system identification; nonlinear identification
methods cannot process noise in the same way as linear system identification methods. There is a greater bias
in nonlinear identification due to measurement noise because even uncorrelated measurement noise becomes
correlated due to the nonlinear elements in the system, for example, due to cubing operations as a result of
nonlinear stiffness elements.

In this paper, a modification to the H2 algorithm is presented that allows it to be used with NIFO for the
case where the number of inputs is greater than the outputs. Correlated outputs, equal in number to the
nonlinear feedback forces, are added to the set of system measurements such that the number of outputs
equals the number of inputs and the matrix to be inverted is square. The choice of the correlated output terms
is based on the form of the characterized nonlinearities in the system. It is shown that this modification to the
H2 algorithm not only gives reliable estimates for the case with noise on the input measurements but is also
more robust than the H1 and Hv algorithms in the case with simultaneous noise on the input and the output.
Numerical simulations on a single-degree-of-freedom (sdof) Simulinks model are used to illustrate and
compare the performance of the modified algorithm with both H1 and Hv for different cases with noise on
simulated data. The reason for the improved performance of the new H2 algorithm compared to H1 is
explained mathematically.

The paper begins by reviewing the NIFO method and presenting the modified H2 algorithm. The modified
algorithm is then applied to nonlinear parameter estimation of a single-degree-of-freedom system with
multiple nonlinearities and the robustness to noise is demonstrated.
2. Review of NIFO

In nonlinear systems, the external inputs act together with the internal nonlinear feedback forces on the
underlying linear system to produce the measured outputs of the system. Fig. 1 illustrates the concept of
internal feedback by the nonlinearities and superposition of the external forces and the internal feedback
Fig. 1. Feedback by nonlinearities into a linear vibrating system illustrating the superposition of the external forces and the internal

feedback forces.
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forces. This feedback process is evident in the impedance model formulation for an arbitrary lumped
parameter mechanical system given by

BLðoÞXðoÞ ¼ FðoÞ �
XN

i¼1

miðoÞBniY nli, (1)

which can be written as

BLðoÞXðoÞ ¼ FðoÞ þ FnðoÞ; (2)

where BL(o) is the linear impedance matrix, mi(o) are the nonlinear (frequency dependent) coefficients, F(o) is
the vector of Fourier transforms of the inputs, X(o) is the vector of Fourier transforms of the outputs, Ynli(o)
are scalar Fourier transforms of the nonlinear restoring forces of the outputs, which account for the internal
feedback forces, N is the number of nonlinearities included in the model, and Fn(o) is the vector of the
nonlinear feedback forces. Each non-zero element of incidence vector, Bni, is either a 1 or a�1; these elements
determine the location of the nonlinearity. A different Bni and Ynli(o) pair is used to model each nonlinear
element in the system.

The NIFO parameter estimation formulation is derived from Eq. (1) by multiplying both sides of the
equation on the left by the linear system (square) frequency response function matrix, HL(o), and separating
the measured and unmeasured quantities as follows:

XðoÞ ¼ ½HLðoÞ HLðoÞm1ðoÞBn1ðoÞ HLðoÞm2ðoÞBn2ðoÞ � � �HLðoÞmN ðoÞBN2ðoÞ�

FðoÞ

�

Ynl1ðoÞ

Ynl2ðoÞ

:

:

:

YnlNðoÞ

0
BBBBBBBBB@

1
CCCCCCCCCA

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
. (3)

If the inputs and the outputs can be measured, and because the nonlinear functions can be calculated explicitly
in terms of the measured inputs and the outputs, the set of equations in Eq. (3) can be used to estimate the best
unbiased least squares estimate of the linear frequency response functions at the forced degrees of freedom and
the nonlinear parameters mi(o) at forced and unforced degrees of freedom in a single step.

Consider a single-degree-of-freedom model. The equation of motion can be written in the frequency domain
for zero initial conditions as follows when the nonlinear elements are taken to be frequency independent,

ð�o2M þ joC þ KÞX ðoÞ þ mYnlðoÞ ¼ F ðoÞ. (4)

In this equation, Yn1(o) is the Fourier transform of a particular nonlinear feedback force, called a ‘describing
function’, and m is the corresponding nonlinear coefficient, assumed constant here, that determines the
nonlinear weighting. This equation can be rewritten in the following form to highlight the presence of the
nominal linear frequency response function:

X ðoÞ ¼
1

ð�o2M þ joC þ KÞ
F ðoÞ �

m
ð�o2M þ joC þ KÞ

Y nlðoÞ. (5)

Note that the coefficient of F(o), 1/(�o2M+joC+K), is equal to the frequency response function of the
underlying linear system (i.e., ratio of X(o) to F(o) when m is zero); consequently, the nonlinear term in the
second expression on the right-hand side of this equation determines the extent to which the system vibrates
away from the linear operating point due to the presence of the nonlinearity.

If the linear frequency response function is replaced with the notation H(o), Eq. (5) can be written in matrix
form as follows:

X ðoÞ ¼ ½HðoÞ mHðoÞ�
F ðoÞ

�YnlðoÞ

" #
. (6)
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Eq. (6) is equivalent to a two input, single output frequency domain model. Because the two inputs are not
completely linearly correlated at any given frequency, a least squares parameter estimation procedure can be
carried out to calculate the three coefficient functions in the row matrix on the right-hand side of the equation
using spectral averaging via cross- and auto-power spectra. For example, if repeated runs using broad band
stochastic (random) excitation are carried out, the results from each run can be assembled as

fX ðoÞ1 X ðoÞ2 � � � X ðoÞNavg
g1�Navg

¼ ½HðoÞ mHðoÞ�1�2
F ðoÞ1 F ðoÞ2 � � � F ðoÞNavg

Y nlðoÞ1 YnlðoÞ2 � � � YnlðoÞNavg

" #
2�Navg

, (7)

where Navg is the number of spectral averages. To solve this equation for the given number of spectral
averages, the Hermitian transpose of the matrix on the right-hand side is multiplied on the right of both sides
of the equation, thus producing cross- and auto-power matrices with the response data matrix and itself. These
matrices are then amenable to standard cumulative spectral processing operations via H1, H2 and Hv

calculations, whichever is more appropriate for the given assumptions regarding measurement noise.
Note that unlike linear system identification, even uncorrelated response measurement noise can seriously
corrupt the parameter estimates for nonlinear system identification because the nonlinear describing function
(i.e., Yn1(o)) always results in correlated noise.
3. The modified H2 algorithm

The H2 frequency response function estimator is given by the following equation:

H ¼ GXX GFX�1, (8)

where GXX is the auto-power matrix and GFX is the cross-power matrix. It is clear that the cross-power
matrix GFX has to be square for a unique solution. This condition can only occur if the number of outputs
equals the number of inputs. For the case where the nonlinear output of the single-degree-of-freedom system is
considered as an internal feedback force, the following expression is derived:

GFX ¼
F1

�Ynl

" #
½X �� ¼

GFX11

�GYXnl1

" #
. (9)

This matrix is a 2� 1, which is difficult to invert because of ill-conditioning. As an example, the H2 algorithm
was used to estimate the linear component and the nonlinear parameter of a single-degree-of-freedom system
with cubic stiffness nonlinearity in Simulinks using NIFO (Eq. (6)). The parameters used in this simulation
are given in Table 1. This problem involves two inputs and one output. A broad-band random input was used
to obtain the estimates of the parameters using the H2 algorithm as shown in Fig. 2. It is clear that both
estimates are erroneous because a non-square matrix was inverted.

To circumvent the problem of inverting a 2� 1 matrix, an extra correlated output, X2, was added such that,

GFX ¼
F 1

�Y nl

" #
½X �1 X �2� ¼

GFX11 GFX12

�GYXnl1 �GYXnl2

" #
, (10)
Table 1

Parameters of the single-degree-of-freedom nonlinear system with cubic stiffness nonlinearity

Mass (M) Stiffness (K) Damping (C) Nonlinear parameter (m)

0.0024 0.5 0.03 0.3
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Fig. 2. (a) Magnitude of the linear frequency response function: actual (- - - -) and estimated (—). (b) The estimated nonlinear parameter.

Estimates generated by using the Nonlinear Identification through Feedback of the Outputs and the original H2 algorithm with an unequal

number of inputs and outputs.

M. Haroon, D.E. Adams / Journal of Sound and Vibration 320 (2009) 822–837826
where Ynl ¼ X3 due to the cubic form of the nonlinearity. This matrix is size 2� 2 and can be easily inverted.
Substituting Eq. (10) into Eq. (8) with

GXX ¼
X 1

X 2

" #
½X �1 X �2� ¼

GXX11 GXX12

GXX21 GXX22

" #
, (11)

gives

H ¼

ðGXX12ÞðGYXnl1Þ � ðGXX11ÞðGYXnl2Þ

detðGFXÞ

ðGXX12ÞðGFX11Þ � ðGXX11ÞðGFX12Þ

detðGFXÞ

ðGXX22ÞðGYXnl1Þ � ðGXX21ÞðGYXnl2Þ

detðGFXÞ

ðGXX22ÞðGFX11Þ � ðGXX21ÞðGFX12Þ

detðGFXÞ

2
6664

3
7775, (12)

where

detðGFXÞ ¼ �ðGFX11ÞðGYXnl2Þ þ ðGFX12ÞðGYXnl1Þ. (13)

If the extra output, X2 ¼ X3 (nonlinear internal feedback force) is also considered to be an output, then
Eq. (12) reduces to,

(14)

) H ¼
H mH

0 �1

� �
. (15)

This algorithm was also used to estimate the quantities in Eq. (6) (Fig. 3). It is clear that the modification leads
to accurate estimates of the linear frequency response function and the nonlinear parameter. The choice of the



ARTICLE IN PRESS

0 1 2 3 4 5 6 7
0

1

2

3

|H
(ω

)| 
[m

/N
]

0 1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

Frequency [Hz]

μ 
(ω

)

Fig. 3. (a) Magnitude of the linear frequency response function: actual (- - - -) and estimated (—). (b) The estimated nonlinear parameter.
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additional output is logical as it is related to the form of the nonlinear function and is actually a part of the
actual output of the system. This choice also simplifies the second row of the resulting parameter matrix.

The modified H2 algorithm was also applied to the case with two nonlinearities in the single-degree-of-
freedom system. Quadratic and cubic stiffness nonlinearities were included in the model. The NIFO model for
this system is

X ðoÞ ¼ ½HðoÞ m1HðoÞ m2HðoÞ�

F ðoÞ

�X 2ðoÞ

�X 3ðoÞ

2
64

3
75, (16)

with m1 ¼ 0.15 and m2 ¼ 0.3.
First, the original H2 algorithm was used to estimate the parameters in the model. Fig. 4 shows that as

expected the estimates are erroneous. Next, the modified H2 algorithm was used with both the nonlinear
describing functions also used as outputs of the system. As in the previous case, the new algorithm provides
accurate estimates of the parameters (Fig. 5).

The parameter matrix for this case is

H ¼

H m1H m2H

0 �1 0

0 0 �1

2
64

3
75. (17)

The H2 algorithm was also applied to nonlinear system identification of a two degree of freedom with
similar improvements in the linear frequency response function and nonlinear parameter estimates with the
modified H2 algorithm.
3.1. Effect of choice of correlated output term on H2 estimate

In the modified H2 algorithm the form of the nonlinear function is chosen as the additional correlated
output because it is a component of the output of the system. The results demonstrated that this choice is
effective in parameter estimation. A range of power polynomials with orders between 0 and 30 were used to
study the effect of the choice of the form of the correlated output on the H2 algorithm. Fig. 6 shows the mean
square error (MSE) in the linear frequency response function estimate and the absolute error in the nonlinear



ARTICLE IN PRESS

0 1 2 3 4 5 6 7
0

1

2

3

|H
(ω

)| 
[m

/N
]

0 1 2 3 4 5 6 7
0

0.2

0.4

Frequency [Hz]

μ 
(ω

)

Fig. 5. (a) Magnitude of the linear frequency response function: actual (- - - -) and estimated (—). (b) The estimated nonlinear parameters:

m1 (—), m2 (- - - -). Estimates generated by using the Nonlinear Identification through Feedback of the Outputs and the modified H2

algorithm.

0 1 2 3 4 5 6 7
0

1

2

3

1 2 3 4 5 6 7
0

0.5

1

Frequency [Hz]

|H
(ω

)| 
[m

/N
]

μ 
(ω

)

Fig. 4. (a) Magnitude of the linear frequency response function: actual (- - - -) and estimated (—). (b) The estimated nonlinear parameters:

m1 (—), m2 (- - - -). Estimates generated by using the Nonlinear Identification through Feedback of the Outputs and the original H2

algorithm.

M. Haroon, D.E. Adams / Journal of Sound and Vibration 320 (2009) 822–837828
parameter estimate, for cubic stiffness nonlinearity, as a function of the choice of the power of the additional
output term, Xn. First, as expected, the power 1 gives the maximum error because the matrix to be inverted,
GFX, becomes singular. n ¼ 3 gives the best estimate because it is the same as the nonlinear function in the
system. It is interesting to note that the linear frequency response function estimates are better for the odd
powers as opposed to the even powers, and as the power increases the error fluctuation decreases and the mean
error increases linearly. The reason for the lower errors for odd powers of X is that the form of the
nonlinearity is odd and odd powers are better correlated with the output of the system. For powers beyond 5,
the errors in the nonlinear parameter are actually lower for the even powers and higher for the odd powers.
The nonlinear parameter is estimated by averaging over a range of values around the resonance of the system,
which is possibly responsible for this apparent anomaly. It should also be noted that the amount of fluctuation
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of the nonlinear parameter error values is 0.1–1%, which is quite small. The same analysis for quadratic
stiffness nonlinearity revealed the same trend. The error in the linear FRF estimate fluctuates between low
values for even powers and high values for odd powers and continually increases with the power of the
nonlinear function of X.

4. Comparison of the modified algorithm with H1 and Hv in the presence of noise

The H1 algorithm minimizes noise on the output and the Hv algorithm is unaffected by noise on both the
input and the output. H1 is formulated as follows:

H ¼ GXF GFF�1. (18)

The Hv algorithm estimates the frequency response functions using the eigenvalue decomposition of a matrix
of power spectrums [6]. According to one of the two formulations of Hv, for the current two input–one output
case the following matrix of auto and cross powers can be defined:

GXFF ¼

GXX11 GXF11 GXY1nl

GFX11 GFF11 GFY1nl

GYXnl1 GYFnl1 GYYnlnl

2
64

3
75. (19)

The eigenvalue decomposition is as follows:

GXFF ¼ VKVH, (20)

where K is a diagonal matrix of eigenvalues. The frequency response function and the nonlinear parameter can
be found from the normalized eigenvector associated with the smallest eigenvalue (l) as follows:

Vlmin
¼

�1

H

mH

8><
>:

9>=
>;. (21)

As mentioned earlier, in nonlinear systems even uncorrelated measurement noise leads to bias errors in the
estimates of system parameters. Hence, for example, the H1 algorithm will not completely remove the effects of
noise on the output for a nonlinear system. This result is especially true in the case of the NIFO formulation
where the output is treated as a feedback force and as such the noise on the output becomes correlated noise on
the input. The modified H2 algorithm was compared with H1 and Hv for three different cases of various levels of
uncorrelated noise: (1) noise on the input; (2) noise on the output; and (3) noise on both input and output.
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4.1. Single-degree-of-freedom system with cubic nonlinearity

NIFO was used for parameter estimation of a Duffing oscillator with the system parameters listed in
Table 1. H1, Hv and modified H2 were used to solve Eq. (6). Rms noise of 0–50% was added to the input,
output and then both the input and output in increments of 5%. The mean square error in the linear frequency
response function and the absolute error in the nonlinear parameter estimate were calculated for each of the
algorithms as a function of the noise for the three different cases.
4.1.1. Noise on the input

Fig. 7 shows the errors in the estimates with the three algorithms for the case of noise on the input, and
Figs. 8–10 show the estimates of the linear frequency response function and the nonlinear parameter for 50%
rms noise on the input using H1, modified H2 and Hv, respectively. As expected, H2 provides accurate
estimates in this case (Fig. 9). The estimates actually appear qualitatively more accurate than the Hv estimates
(Fig. 10), and this is supported by the quantitative evidence in Fig. 7. H1 provides the least accurate estimate of
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Fig. 7. Errors in the (a) magnitude of the linear frequency response function, and (b) the nonlinear parameter estimates, with noise on the

input for the H1 (—), modified H2 (- - - -) and Hv (����) algorithms.
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the linear frequency response function but the nonlinear parameter estimates are better than for the Hv

algorithm. As Fig. 8 shows, H1 underestimates the linear frequency response function. The reason for this
result can be explained by solving Eq. (18) for this case with noise on the input:

(22)

where n is uncorrelated noise on the input, and

GFF ¼
F þ u

�Ynl

" #
½ðF þ uÞ� � Y �nl� ¼

GFFþ Guu �GFYnl

�GYFnl GYYnl

" #
. (23)
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Substituting Eqs. (22) and (23) into Eq. (18) gives

H ¼
ðGXFÞðGYYnlÞ � ðGXYnlÞðGYFnlÞ

detðGFFÞ

ðGXFÞðGFYnlÞ �GXYnlðGFFþ GuuÞ
detðGFFÞ

� �
¼ ½H mH�, (24)

where

detðGFFÞ ¼ ðGFFþ GuuÞGYYnl � ðGFYnlÞðGYFnlÞ. (25)

Eqs. (24) and (25) explain the results in Fig. 8. The noise auto-power term Gnn in the denominator of Eq. (24)
causes the linear frequency response function to be under-estimated, and this bias error becomes progressively
worse as the noise level increases. The nonlinear parameter, on the other hand, has this noise term in both the
numerator and the denominator. The denominator term dominates below resonance (around 2Hz) and the
numerator term dominates above resonance, leading to the estimate seen in Fig. 8.

The estimates with the modified H2 algorithm can be obtained by solving Eq. (8), which results in

H ¼

ðGXYnlÞðGYXnlÞ � ðGXXÞðGYYnlÞ

detðGFXÞ

ðGXYnlÞðGFXÞ � ðGXXÞðGFYnlÞ

detðGFXÞ

0 �1

2
4

3
5, (26)

where

detðGFXÞ ¼ �ðGFXÞðGYYnlÞ þ ðGFYnlÞðGYXnlÞ. (27)

It is clear that the noise does not affect the modified H2 estimate, theoretically. The observed errors in Fig. 9
are due to the fact that it is difficult to numerically generate completely uncorrelated signals.

4.1.2. Noise on the output

Fig. 11 shows the errors in the estimates obtained from the three algorithms for the case of noise on the
output, and Figs. 12–14 show the estimates of the linear frequency response function and the nonlinear
parameter for 50% rms noise for the three algorithms. H1 provides the most accurate estimates in this case
(Fig. 12), and the modified H2 algorithm is comparable to Hv (Figs. 11, 13 and 14), although it is not nearly as
accurate as H1. Solving Eq. (18) for this case with noise on the output gives

GXF ¼ ½X þ m�½F� � Y �nl�

¼ ½X þ m�½F� � ððX þ mÞ3Þ��

¼ ½X þ m�½F� � X �cn�, (28)
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Fig. 11. Errors in the (a) magnitude of the linear frequency response function, and (b) the nonlinear parameter estimates, with noise on the

output for the H1 (—), modified H2 (- - - -) and Hv (����) algorithms.
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Fig. 12. (a) Magnitude of the linear frequency response function: actual (- - - -) and estimated (—). (b) The estimated nonlinear parameter.

Nonlinear Identification through Feedback of the Outputs and the H1 algorithm with 50% rms noise on the output.
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Fig. 13. (a) Magnitude of the linear frequency response function: actual (- - - -) and estimated (—). (b) The estimated nonlinear parameter.

Nonlinear Identification through Feedback of the Outputs and the modified H2 algorithm with 50% rms noise on the output.
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where m is uncorrelated noise on the output. The feedback forcing term causes the noise on the output to also
be part of the input in NIFO. It is treated as an output correlated noise term, Xcn. The resulting estimates are

H ¼
ðGXFÞðGXXcncnÞ � ðGXXcnÞðGXFcnÞ � ðGmX cnÞðGXFcnÞ

detðGFFÞ

ðGXFÞðGFXcnÞ �GFFðGXXcn þ GmX cnÞ

detðGFFÞ

� �
¼ ½H mH�, (29)

where

detðGFFÞ ¼ ðGFFÞðGXXcncnÞ � ðGFXcnÞðGXFcnÞ. (30)

It is clear that the nonlinear feedback results in noise that contaminates the H1 estimates.
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Fig. 14. (a) Magnitude of the linear frequency response function: actual (- - - -) and estimated (—). (b) The estimated nonlinear parameter.

Nonlinear Identification through Feedback of the Outputs and the Hv algorithm with 50% rms noise on the output.
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The estimates with the modified H2 algorithm can be obtained by solving Eq. (8), which results in

H ¼

jGXXcnj þ jGXmcnj � ðGXXÞðGXXcncnÞ

�ðGmmÞðGXXcncnÞ þ ðGXXcnÞðGXmcnÞ

þðGmX cnÞðGXXcnÞ

detðGFXÞ

ðGXXcn þ GmX cnÞðGFXÞ

�ðGmmþGXXÞðGFXcnÞ

detðGFXÞ

0 �1

2
666664

3
777775, (31)

where

detðGFXÞ ¼ �ðGFXÞðGXXcncnÞ þGFXcnðGXXcn þGXmcnÞ. (32)

The modified H2 algorithm is affected more by the noise and, hence, the estimates degrade slightly more with
noise as compared to H1. Despite this, the estimates are comparable in accuracy to those obtained with the Hv

algorithm (Figs. 13 and 14).

4.1.3. Noise on input and output

Fig. 15 shows the errors in the estimates with the three algorithms for the case of simultaneous noise on the
input and output, and Figs. 16–18 show the estimates of the linear frequency response function and the
nonlinear parameter for 50% rms noise for the three algorithms. The modified H2 algorithm provides the most
accurate estimates in this case (Fig. 17), and the modified H1 algorithm provides the least accurate estimates
(Fig. 16). Solving Eq. (18) for the H1 estimates gives

H ¼ ðGXFÞðGXXcncnÞ � ðGXXcnÞ½GXFcn� � ðGmX cnÞðGXFcnÞ

detðGFFÞ

ðGXFÞðGFXcnÞ �GFFðGXX cn þ GmX cnÞ

�GuuðGXXcn þ GmX cnÞ

detðGFFÞ

2
664

3
775

¼ ½H mH�, (33)

where

detðGFFÞ ¼ ðGFFþ GuuÞGXXcncn � ðGFXcnÞðGXFcnÞ. (34)

As with the noise on input case, Eqs. (33) and (34) show that the noise auto-power term Gnn in the
denominator of Eq. (33) causes the linear frequency response function to be under-estimated (Fig. 16), and
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Fig. 16. (a) Magnitude of the linear frequency response function: actual (- - - -) and estimated (—). (b) The estimated nonlinear parameter.

Nonlinear Identification through Feedback of the Outputs and the H1 algorithm with 50% rms noise on both the input and the output.
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Fig. 15. Errors in the (a) magnitude of the linear frequency response function, and (b) the nonlinear parameter estimates, with noise on

both the input and the output for the H1 (—), modified H2 (- - - -) and Hv (����) algorithms.
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this error becomes progressively worse as the noise level increases. The nonlinear parameter, on the other
hand, has this term in both the numerator and the denominator, along with output noise terms in the
numerator. As with the input noise case, the denominator term dominates below resonance (around 2Hz) and
the numerator term dominates above resonance with less accurate estimates than the input noise case in the
higher frequency range.

The estimates with the modified H2 algorithm are the same as those for the case with noise on the output,
Eq. (31). The estimates are more accurate than those obtained using either the H1 or Hv algorithms in the
presence of noise.

The analysis in this section shows that the modified H2 algorithm is quite robust to noise. It provides
better performance in terms of accuracy and robustness to noise of the estimates than H1 except when
noise is on the output, and even in that case it is only slightly less accurate in the presence of noise than H1,
which is expected to be the best estimator. In addition, the performance of the modified H2 algorithm is either
comparable to or better than the Hv algorithm in terms of accuracy and robustness to noise for all three noise
cases.
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Fig. 18. (a) Magnitude of the linear frequency response function: actual (- - - -) and estimated (—). (b) The estimated nonlinear parameter.

Nonlinear Identification through Feedback of the Outputs and the Hv algorithm with 50% rms noise on both the input and the output.

0 1 2 3 4 5 6 7
0

1

2

3

|H
(ω

)| 
[m

/N
]

0 1 2 3 4 5 6 7
0

0.5

1

Frequency [Hz]

μ 
(ω

)

Fig. 17. (a) Magnitude of the linear frequency response function: actual (- - - -) and estimated (—). (b) The estimated nonlinear parameter.

Nonlinear Identification through Feedback of the Outputs and the modified H2 algorithm with 50% rms noise on both the input and the

output.
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4.2. Single-degree-of-freedom system with quadratic and cubic nonlinearities

The same analysis as in the previous section was performed on the single-degree-of-freedom system with two
nonlinearities, quadratic (m1 ¼ 0.15) and cubic (m2 ¼ 0.3). H1, Hv and modified H2 algorithms were used to
solve Eq. (16). The relative performance of the three algorithms was found to be similar to the relative
performance demonstrated in the previous analysis.

As an example, the errors in the estimates with the three algorithms for the case of simultaneous noise on
input and output are shown in Fig. 19. As with the case involving a single nonlinearity, the modified H2

algorithm provides the most accurate estimates in the presence of noise.
The analysis in this section demonstrates that the modification to the H2 algorithm by adding a

correlated output not only solves the problem of having to invert a non-square matrix for the case
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of unequal inputs and outputs, but also makes the accuracy of parameter estimates quite robust to all noise
sources.

5. Conclusions

A modified form of the H2 frequency response function estimation algorithm was presented to overcome the
issue of non-unique solutions when the number of inputs is greater than the number of outputs, which is often
the case with nonlinear parameter estimation with feedback as in the Nonlinear Identification through
Feedback of the Outputs method. Correlated outputs were added to the system, based on the form of the
nonlinear function, to make the inverted matrix square. It was shown that the modified algorithm is robust to
noise on the input and output and actually out-performs H1 and Hv for the cases of noise on the input and
simultaneous noise on both input and output. The greater robustness to noise on both the input and the
output is important because the feedback nature of nonlinear parameter estimation algorithms results in noise
on the output also becoming part of the input data. Mathematical derivations of the H1 and modified H2

algorithm were used to explain the greater robustness of the modified H2 algorithm over the traditional H1

algorithm.
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